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Abstract
The ability to predict the crystal structure of a material, given its constituent
atoms, is one of the most fundamental problems in materials research. There
exist a number of empirical methods which make predictions by clustering
existing experimental data, generally using a few simple physical parameters.
Although Pettifor maps are perhaps the best known and most successful of these
empirical methods, the implementation and assessment of Pettifor maps has not
been formalized. Here we propose well-defined algorithms for transforming
data from a standard materials crystal structure database into a Pettifor map,
using the map to predict the crystal structure for a new system, and assessing
the predictive accuracy of the map. We introduce the idea of a candidate crystal
structure list, demonstrating that by predicting more than one candidate for a
new system the utility of the maps can be enhanced. We assess the accuracy
of the maps by testing predictive accuracy using a cross-validation technique
on all AB and A3B compounds in the CRYSTMET database. We show that
for a new unknown alloy with a stable structure at the stoichiometry of the
Pettifor map, a candidate list of five structures will contain the correct crystal
structure for the alloy 86% of the time. The algorithms presented here can be
used to automate Pettifor maps in materials crystal structure databases, making
it possible for users to construct, apply and assess entirely new Pettifor maps
quickly and easily.

1. Introduction

Predicting the stable crystal structures for materials is an unsolved problem of fundamental
importance in materials science. First-principles approaches have made impressive
progress [1–3] but are limited by the time it takes to explore the many possible structures
for a new system. Historically, the problem of structure prediction has been addressed by
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extracting rules from systems for which the experimental data is available and applying these
rules to unknown systems. The Hume-Rothery [4] rules for solubility in metal alloys, or
the Pauling rules for the structure of oxides [5], are well-known examples of this. A more
formal data-mining approach has led to a number of heuristic methods to predict unknown
alloy structures [6]. In such data-mining approaches one tries to correlate the stable structure
to a small set of relatively easy to determine parameters, such as pseudopotential radii,
electronegativities or electron density. If alloys with the same structure cluster together in
this parameter space, some predictive capability can be obtained from these correlations. A
well known, and remarkably simple, heuristic scheme is the one proposed by Pettifor [7]3.
To construct a structure map Pettifor assigns a numerical ‘Chemical Scale’ value to each
element, allowing binary alloys Ax By to be mapped onto a Cartesian coordinate system, with
the abscissa the Chemical Scale for element A and the ordinate the Chemical Scale for element
B. The predictive power of these Pettifor maps derives from the fact that alloys with similar
stable structures will cluster together in the map. The unknown stable structure for a new alloy
system can be predicted by placing the new alloy on the Pettifor map and examining the stable
structures of the nearby neighbours.

In this paper we attempt to quantify the predictive power of Pettifor maps and provide
some more details on the optimal methods of constructing and extracting information from
them. This includes a description of which data should be used from the databases and making
precise the intuitive ‘neighbour lookup’ procedure for structure predictions.

After this introduction, section 2 will discuss the preparation of the data set. Section 3
will discuss algorithms to formalize the intuitive ‘neighbour lookup’ procedure of making
predictions with Pettifor maps. Section 4 will assess the accuracy of the Pettifor map and
section 5 will give a discussion of the results. Finally, section 6 gives a summary of the
main points.

2. Data preparation

Pettifor maps for AB and A3B compositions were constructed from all entries for these
compositions in the CRYSTMET database [8]. These compositions were chosen since they
have a large number of database entries and therefore should provide good statistics for
assessment of the accuracy of Pettifor maps. Also, the AB composition was important in
some of the early work establishing the Chemical Scale [9] and is therefore likely to provide
something of a best case for its application. Pettifor maps apply at only one composition,
so although we will examine both AB and A3B systems and combine their statistics, the two
compositions are completely independent.

The data set must be cleaned before it can be used. The as-received data set contained
a total of 8019 distinct entries, where each entry contains at least some of the following:
the constitutive elements, their concentrations in the alloy, the structure type, the space
group number and the temperature and pressure. Entries without temperature and pressure
were assumed to be at standard temperature and pressure, consistent with the conventions in
CRYSTMET. In this paper, we will identify the structure type of an alloy by its structure type
name (e.g. NaCl) and its space group number (e.g. 225). Two structure types will be considered
equivalent if they share the same structure type name and space group.

All entries missing any of the constitutive elements, the structure type or the space group
number were considered incomplete and removed from the data. When there are multiple

3 To the best of our knowledge, there are no published updated versions of the binary alloy maps originally published
by Pettifor. However, maps can be constructed from CRYSTMET and other databases within the MedeA InfoMaticA
software package (see http://www.materialsdesign.com/Pages/InfoMaticA.htm).
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studies on the same compound, where the same elements, structure type and space group
number appear in both entries, only one copy was kept in the data. All entries not at standard
temperature and pressure were removed from the data. After removing all incomplete,
duplicate and non-standard temperature and pressure alloys, the database contained 2570
entries and 420 distinct structure types. These make up what we will call Data Set 1 (DS1). The
most common five structure types and the number of times they appear in DS1 (in parentheses)
are NaCl [Fm3̄m](274), Cu3 Au[Pm3̄m](247), CsCl [Pm3̄m](243), CrB [Cmcm](117) and
Fe3C [Pnma](98). These structure types make up 38% of the entries in DS1.

In DS1 there are a number of alloys which are identical in composition but do not have
the same structure type and space group. For example, PSn has entries for structure types
PSn (space group P 3̄m1), GeAs (space group I4mm) and NaCl (space group Fm3̄m). These
cannot all be the true stable crystal structures for PSn at standard temperature and pressure.
It is quite likely that, by careful examination of the original papers, the ambiguity of many
of these multiple structure alloys could be resolved. However, this would be a very large
undertaking, and therefore has not been done here. In general, if automated construction of
Pettifor maps is to be possible, then an extensive literature search cannot be done each time the
map is generated. These ambiguous data entries pose a clear problem for the Pettifor maps. If
a new alloy has a neighbour with multiple different structures in the database, it is unclear how
to use that neighbour to make a prediction. Since these multiple structure alloys are clearly
not physical and create errors in a Pettifor map, we explore the effects of removing these data
points. There are a total of 1041 entries with multiple crystal structures in DS1. When these
are removed we are left with Data Set 2 (DS2), which contains 1540 entries and 205 distinct
structure types. The most common five structure types and the number of times they appear
in DS2 (in parentheses) are NaCl [Fm3̄m](228), Cu3Au [Pm3̄m](191), CsCl [Pm3̄m](182),
Fe3C [Pnma](93) and CrB [Cmcm](80). These structure types make up 50% of the entries
in DS2.

3. Formalizing predictions with Pettifor maps

The intuitive ‘neighbour lookup’ procedure used in Pettifor maps is to place a new alloy on the
map and assume its structure type will be that of its nearest neighbours. This procedure does
not specify how to deal with cases where the nearest neighbours have more than one structure
type or whether more than just the nearest neighbours should be examined. To formalize the
‘neighbour lookup’ approach, we propose that the Pettifor maps should be used to predict not
just a single structure, but a ranked list of candidate structures. Knowing that the true structure
for an alloy is on a relatively short list of candidates is very useful, since it greatly reduces
the space of possibilities one might have to consider in an experimental or first-principles
computational investigation. The hope is that the correct structures will generally appear near
the beginning of the candidate structure lists.

The candidate structure list for a new alloy with unknown structure is constructed
by starting at the coordinates of the new alloy in the Pettifor map and collecting its
closest neighbour alloys in order of increasing distance. Distance is measured by a usual
Euclidean metric, so that for alloys with coordinates (a, b) and (c, d) the distance d is
d = √

(c − a)2 + (d − b)2. Each time a new structure is encountered it is added to the end of
the list of candidate structures. This will be referred to as the nearest-neighbour method.

A variation on the nearest-neighbour method is to consider a fixed size set of nearest
neighbours (the range) and build the candidate structure list by ordering all the different
structure types according to their frequency in this set of neighbours. This will be referred to
as the dominant-neighbour method.
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For the same set of neighbours for a new alloy, the nearest-neighbour and dominant-
neighbour methods will produce candidate structure lists with the same structures, but usually
with a different ordering. The nearest-neighbour method will place structures close to the
new alloy near the front of the list, while the dominant-neighbour method will place structures
appearing more frequently in the neighbourhood near the front of the list.

As a benchmark for the above approaches we also construct a candidate structure list
by simply ordering every structure type in the entire database according to frequency of
appearance. This is a very simple and naive approach and does not make any use of the
clustering patterns in the Pettifor maps. This naive approach will be called the most-frequent
method. The dominant-neighbour method will converge to the most-frequent method as the
set of neighbours is extended to include the whole database.

Note that for all these methods only structures at the same stoichiometry as the new alloy
are used in the candidate structure list.

4. Assessment of Pettifor map accuracy

The effectiveness of each of the methods proposed in section 3 can be assessed by measuring
the percentage of the time the correct crystal structure for a new system is predicted within a
candidate structure list of a given length. A cross-validation approach is used, where each alloy
in the data set is in turn removed from the data and then predicted as if it were an unknown alloy.
The accuracy of the prediction is assessed by comparing to the true crystal structure. This is
done for every entry in the data set and the results are averaged. The cross-validation approach is
important. Assessments of structure prediction methods are often done by drawing boundaries
between structure types by hand and then examining the accuracy of the structural separation,
using all of the data. This suffers from using an informal method to draw boundaries, but
more importantly, it gives the accuracy of the method when boundaries are created already
knowing all the data; the important question is the predictive accuracy of the method when the
boundaries are drawn without knowing the structure of the new system. It is this latter, more
correct assessment of the predictive accuracy that is provided by cross-validation.

The percentage of time the true structure for a new alloy is within the first L candidate
structures is plotted for DS1 and each of the three prediction methods in figure 1.

A similar plot is shown for DS2 in figure 2.
Both the nearest-neighbour and dominant-neighbour methods do significantly better than

the most-frequent method, demonstrating just how much can be gained by making use of the
geometric clustering in the Pettifor maps. It is also clear that the nearest-neighbour method is
the most effective approach to prediction, which is gratifying, since it most closely resembles
the intuitive use of Pettifor maps.

Some of the more technical details associated with the assessment of Pettifor maps are
discussed in the appendix.

5. Discussion

The idea of using a candidate structure list, rather than just predicting a single structure,
seems to be quite useful. For example, in the nearest-neighbour method applied to DS2, the
percentage of time the true structure is in the candidate list increases from 71 to 86% in going
from 1 to 5 structures. However, adding an additional five structures to the list increases the
percentage accuracy only to 89%, showing that the marginal gain for increasing the length of
the candidate structure list is minimal after about five structures. This ‘shortlist’ of candidate
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Figure 1. The percentage of times the true structure for a new alloy is within the first L candidate
structures using the most-frequent (diamonds �), dominant-neighbour (squares ) and nearest-
neighbour (triangles �) methods. Analysis performed with DS1.
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Figure 2. The percentage of times the true structure for a new alloy is within the first L candidate
structures using the most-frequent (diamonds �), dominant-neighbour (squares ) and nearest-
neighbour (triangles �) methods. Analysis performed with DS2.

structures can then be used as trial structures in first-principles calculations or in experimental
refinements in order to identify the ground state.

The difference between DS1 and DS2 is dramatic. For the nearest-neighbour method, the
percent accuracy for the first neighbour increases by 22% in going from DS1 to DS2. This
demonstrates the importance of the step of removing compositions with multiple structures
when making assessments. However, this cleaning must be approached with some caution,
since it is possible that multiple structures are found for alloys that have a greater than chance
probability of being in the boundary regions between clusters in the Pettifor map. Preferential
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removal of systems in boundary regions biases the data by only keeping the systems more
susceptible to clustering, thereby overestimating the effectiveness of the Pettifor map.

There is very little difference between the accuracy of prediction for the AB and A3B
datasets. For example, when using the nearest-neighbour method with a five-structure
candidate list on DS2, the percentage of time the true structure is in the candidate list is 87%
for AB and 85% for A3B. This shows quantitatively that the Pettifor scheme is transferable
to different compositions, although more extensive testing is required before these accuracies
can be assumed in general.

There are a number of systems with structures that are unrepeated, i.e. appear nowhere
else in the database. These systems cannot be predicted correctly with a Pettifor map, since
no neighbour of the uniquely structured alloy will ever share its structure. It is interesting to
consider how the unrepeated structures affect the results, since they represent a source of error
intrinsic to the data set for any empirical approach that relies on clustering like structures.
There are 232 entries with an unrepeated crystal structure in DS1 and 120 in DS2. These
unrepeated structures therefore make up 9 and 8% of the entries in DS1 and DS2, respectively,
and have a proportional effect. By removing all the unrepeated structures the results for the
nearest-neighbour method improve by 8–10% for DS1 and 8–9% for DS2. For five structures
this gives a percentage accuracy of 95% for DS2 without the unrepeated structures. Given that
the data will contain some errors and the simplicity of the Pettifor maps, this is an extremely
impressive result.

Mendeleev numbers [7] are a slightly different way to represent each element other than
the Chemical Scale. Mendeleev numbers follow the same ordering of the elements as the
Chemical Scale, but map the elements to uniformly spaced integers. Since the Chemical Scale
was directly optimized for structural separation, a Pettifor map built from the Chemical Scale is
likely to be more accurate than one built from the Mendeleev numbers [7]. This is confirmed by
our assessment method, where, with the nearest-neighbourmethod, we see up to a 9% (5%) im-
provement when using the Chemical Scale as compared to Mendeleev numbers for DS1 (DS2).

Examining the alloys with incorrectly predicted structures can provide clues for improving
the accuracy of the Pettifor maps. For example, consider the prediction errors when using the
nearest-neighbour method with a five-structure candidate list on DS2, where we ignore all
errors that are associated with structure types that appear only once. It is to be expected
that the Pettifor maps will have more difficulty predicting less common structures, since their
geometrical regions will be poorly delineated in the map. The errors clearly show that the less
common structures are more likely to be predicted incorrectly. For example, 38% of the entries
in DS2 with structure types that appear only twice are predicted incorrectly, compared to only
0.4% of entries with the most common NaCl [Fm3̄m] structure type. By keeping only entries
with structure types appearing more than five times, the accuracy of the nearest-neighbour
method with a five-structure candidate list increases to 98% on DS2. Significant improvements
might be obtained by treating these uncommon structures types by other methods.

The geometric distribution within the Pettifor map of the incorrectly predicted structures
may also provide clues to more accurate approaches. For example, the methods used here
were all isotropic, in that they considered neighbours in a circle surrounding the alloy being
predicted. Other methods, where the search for relevant neighbours is extended anisotropically
along optimal directions, may be more effective. Guidance in choosing effective anisotropic
methods may be obtained from the distribution of the errors in the isotropic approaches.

The methods employed in this work test only for the ability of a Pettifor map to predict the
correct structure for an alloy known to have an ordered phase at the stoichiometry of the map.
In other words, the probabilities calculated here are all conditional on first establishing that the
alloy has an ordered phase at stoichiometry s. For an unknown alloy, if pstr is the probability
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of correctly predicting the structure type conditional on there being an ordered phase at s, and
pord is the probability of correctly predicting if there is any ordered structure at s, then the
probability that the predicted ordered phase actually occurs in the alloy is given by pord ∗ pstr .
Therefore, the usefulness of the Pettifor maps also depends on the ability to accurately predict
the existence of some ordered phase, which is a limitation that is rarely acknowledged. In some
experimental applications of Pettifor maps it may be obvious that an ordered phase exists, but
this is not true in general. There are a number of methods that can help predict the presence
of an ordered phase (for example, Miedema’s [10] and first-principles methods [1, 3]), and
perhaps the Pettifor map can itself be useful, but to our knowledge the accuracy of different
approaches for predicting the presence of some ordered phase at a given stoichiometry has not
been established quantitatively. The prediction of the presence of an ordered phase remains
an open problem in the application of Pettifor maps.

Pettifor maps are a simple method of data mining for structure prediction. It is an important
question to ask if a research program for significantly better methods is worthwhile. If we
have any data-mining method that can predict only from structures already identified, then
unrepeated structures will always be predicted incorrectly. If we exclude these unrepeated
structures, the 95% predictive accuracy which can be obtained using five-candidate structures
sets a very high bar for any other method. However, approaches that could push that accuracy
close to 100%, or that give comparable accuracy with a candidate list of fewer than five
structures, would be quite useful. More importantly, the restriction to structures and alloys that
have been measured experimentally renders Pettifor maps ineffective for many key problems,
since in the more interesting space of multicomponent materials only a small percentage of
systems have been studied [6]. However, first-principles methods may provide an efficient
method to fill in holes in the databases, and data mining these results is an exciting new
area [3].

Perhaps the most important impact of having formalized the process of constructing, using
and assessing Pettifor maps is that it allows their application to be completely automated,
making it relatively simple to go far beyond the standard Pettifor maps available today. By
interfacing with materials structure databases it is possible to rapidly construct, apply and
assess entirely new Pettifor maps. These can be restricted to reduced sets of binary data,
thereby perhaps increasing accuracy, or can be extended to new binary or multicomponent
systems. In addition, other mapping schemes, e.g. using different Chemical Scales or more
complex three-dimensional parametrizations [6], can also be implemented. In all these cases,
the algorithms discussed here can be used to assess the accuracy of the new Pettifor maps
self-consistently, thereby giving immediate feedback on whether new maps are likely to be
effective.

6. Summary

We have developed a method to automate the construction and testing of Pettifor maps based on
data from a standard materials crystal structure database. We describe in detail the cleaning of
the database entries, which is an essential step in constructing a useful Pettifor map. We propose
a nearest-neighbour method for implementing predictions with the Pettifor map,demonstrating
that it is more accurate than a dominant-neighbour approach. In the process we confirm that
the clustering properties of the Pettifor map greatly increase the predictive accuracy over a
more naive approach based on the most frequently appearing structures. We introduce the
idea of generating a candidate structure list for predicting a new structure and show that this
adds significant predictive accuracy to the Pettifor maps compared to just predicting a single
structure. Using a cross-validation approach we show that the predictive accuracy of Pettifor
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maps for the AB and A3B alloys is about 86% for a candidate list of five structures. Without
unrepeated structures this predictive accuracy increases to 95%, demonstrating that there is
only marginal room for improvementwith data-mining methods that are restricted to predicting
experimentally known structures. It is now possible to implement the automated construction,
use and testing of Pettifor maps in materials databases, giving the opportunity to develop
Pettifor maps in new alloy spaces quickly and easily.
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Appendix

There are a few important ambiguities with the assessment of Pettifor maps that must be
considered. First, there are two choices for how to map an AnBm alloy onto a point (x, y) in
the map. One can map A → x, B → y, or A → y, B → x . It is important to make this
choice in a consistent manner, or alloys that should be close to each other might end up being
widely separated. For m �= n we always made x the minority constituent. For m = n we
always made x the constituent with the lowest value on the Chemical Scale.

Another issue is that, in DS1, there are a number of alloy systems identical in composition
but with different crystal structures (these are removed in DS2, as discussed in section 2), and
it is not clear exactly how to treat these. We chose to treat every entry in the data set as a
different alloy. There may be other methods to deal with the problem of multiple structures
for a single alloy, but we believe this to be a logical and transparent approach.

Another choice that must be made is the range of the neighbour environment to use for
the dominant-neighbour method. A very small range, say only a few nearest neighbours, will
capture clustering well, but produce only a very short list of candidate structures, possibly
missing the correct one. A large range will produce a large list of candidate structures, but
the space sampled may be too far from the new alloy to make good use of the local clustering
in the Pettifor maps. The optimal range is dependent somewhat on the needs of the user.
Here we chose a range of 20 neighbours, primarily because it gave about ten structures on the
candidate structure list, making for an easy comparison with the other methods, and provided
fairly representative accuracy. More than 20 neighbours increases the length of the candidate
list, but there is little improvement in having a longer list than ten entries, and there is a
reduction in the accuracy for the earlier parts of the list. For DS2, a range of ten neighbours
gives seven structures in the candidate structure list but improves the percentages by 0–5%
(5% for the first candidate structure) over using a range of 20 neighbours, for equivalent length
candidate lists. A range of only three neighbours gives a list of only four candidate structures
but the accuracy is increased by 2–9% (9% for the first candidate structure) compared to 20
neighbours, for equivalent length candidate lists. However, the total accuracy when the full
candidate list is used is 7% higher for a range of 20 as compared to three neighbours, since
the candidate structure list is significantly longer. Therefore, as the range increases, there is a
trade-off between accuracy for the first few structures and total accuracy over the whole list.
However, we have found no range that yields better results than the nearest-neighbour method
for either dataset.

A somewhat more complicated problem is that of degeneracy, where two or more different
structures are located at the same distance or have the same frequency. When structures are
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degenerate the ordering of candidate structure lists is ambiguous. For example, in the dominant-
neighbour and most-frequent methods, when multiple structures have the same frequency, it
is not clear which should come first in the candidate structure list. Similarly, in the nearest-
neighbour method there is ambiguity introduced by the fact that there are often multiple
neighbours, with multiple structure types, all at the same distance.

Consider a case where the candidate structure list has P well-ordered elements, and then
there is a set of Q elements that are all degenerate in their order due to the prediction method
being used. If the true structure of the alloy is in those Q elements then it is not clear how
many candidate structures had to be examined in order to predict the correct structure. If we
are being very charitable to the prediction method, we might assume that the correct structure
can be put first and that our candidate list gave the correct prediction with length P + 1. At
the opposite extreme we might assume that the correct structure should be put last and that our
candidate list gave the correct prediction with length P + Q. In order not to bias the results,
the choice was made to choose the length randomly from a uniform distribution of integral
values in the interval [P + 1, P + Q].

These ambiguities introduced by degeneracy seem to have a very small effect for DS2.
For example, using the nearest-neighbour method, the largest change in percentage accuracy
was only 3% between using the two extremes of P + 1 and P + Q. For DS1 the effect
was much larger, giving a maximal change in percentage accuracy of 23% between the two
extremes. There are methods one could explore to treat this degeneracy. One idea is to
combine some of the proposed prediction methods to break degeneracies. For example, if a
degeneracy is encountered using the nearest-neighbour method, it might be broken by ordering
the degenerate structures by frequency, as is done in the most-frequent method. Because the
effect of degeneracy is only significant due to the unphysical entries in DS1 we have not
pursued these more involved approaches.
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